[1] Chen Xu et al., P-MMF: Provider Max-min Fairness Re-ranking in Recommender System. The Web Conference 2023. Spotlight & best-paper candidate
[2] Chen Xu, Xiaopeng Ye, et al. 2024. A Taxation Perspective for Fair Re-ranking. In Proceedings of SIGIR '24 Best-paper Honorable Mention
[3] Chen Xu, Jujia Zhao et al. 2025. Understanding Accuracy-Fairness Trade-offs in Re-ranking through Elasticity in Economics. In Proceedings of SIGIR ‘25.
[1] 推荐公平性训练存在的误差累计与消除:Bridging Jensen Gap for Max-Min Group Fairness Optimization in Recommendation. Chen Xu, Yuxin Li, Wenjie Wang, Liang Pang, Jun Xu*, Tat-Seng Chua, ICLR 2025.
[2] 大模型用户公平性:A Study of Implicit Ranking Unfairness in Large Language Models. Chen Xu, Wenjie Wang, Yuxin Li, Liang Pang, Jun Xu*, Tat-Seng Chua. EMNLP findings 2024
[3] 工业场景下用户流量变化时公平性算法: BankFair: Balancing Accuracy and Fairness under Varying User Traffic in Recommender System. Xiaopeng Ye, Chen Xu, Jun Xu*, Xuyang Xie, Gang Wang, Zhenhua Dong CIKM 2024
[4] 分布式检索系统公平性: FairSync: Ensuring Amortized Group Exposure in Distributed Recommendation Retrieval. Chen Xu, Jun Xu*, Yiming Ding, Xiao Zhang, Qi Qi, WWW 2024
[5] 推荐系统长期公平性: LTP-MMF: Towards Long-term Provider Max-min Fairness Under Recommendation Feedback Loops. Chen Xu, Xiaopeng Ye, Jun Xu*, Xiao Zhang, Weiran Shen, Ji-Rong Wen. TOIS 2024
[6] 大模型时代公平性Survey与tutorial: Bias and Unfairness in Information Retrieval Systems: New Challenges in the LLM Era, Sunhao Dai, Chen Xu, Shicheng Xu, Liang Pang, Jun Xu, Zhenhua Dong KDD2024. https://llm-ir-bias-fairness.github.io/